16 research outputs found

    Is there adaptation in the ozone mortality relationship: A multi-city case-crossover analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ozone has been associated with daily mortality, mainly in the summer period. Despite the ample literature on adaptation of inflammatory and pulmonary responses to ozone, and the link, in cohort studies, between lung function and mortality risk there has been little done to date to examine the question of adaptation in the acute mortality risk associated with ambient ozone.</p> <p>Methods</p> <p>We applied a case-crossover design in 48 US cities to examine the ozone effect by season, by month and by age groups, particularly focusing on whether there was an adaptation effect.</p> <p>Results</p> <p>We found that the same day ozone effect was highest in summer with a 0.5% (95% CI: 0.38, 0.62) increase in total mortality for 10 ppb increase in 8-hr ozone, whilst the effect decrease to null in autumn and winter. We found higher effects in the months May- July with a 0.46% (95% CI: 0.24, 0.68) increase in total mortality for 10 ppb increase in ozone in June, and a 0.65% (95% CI: 0.47, 0.82) increase in mortality during July. The effect decreased in August and became null in September. We found similar effects from the age group 51–60 up to age 80 and a lower effect in 80 years and older.</p> <p>Conclusion</p> <p>The mortality effects of ozone appear diminished later in the ozone season, reaching the null effect previously reported in winter by September. More work should address this issue and examine the biological mechanism of adaptation.</p

    Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    Get PDF
    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard

    Experimental Human Exposure to Air Pollutants Is Essential to Understand Adverse Health Effects

    No full text
    Air pollution has been found to cause significant global mortality, with 6.8 million excess deaths attributed to air pollution each year, and similarly large numbers of exacerbations of asthma, chronic obstructive pulmonary disease, and cardiovascular diseases. Epidemiological research has identified associations, and experimental human exposure has provided critical information on dose-response relationships of adverse effects caused by controlled human exposure to individual pollutants. Human exposures further enable examination of the relationship of adverse effects such as symptoms and pulmonary function changes to presumed mechanisms of disease revealed through analysis of bronchoalveolar lavage fluid obtained from the lower respiratory tract. In this Perspective, we analyze the ethics of human exposure, the importance of the information gained, and the risks of such exposure. We find that these studies appear to have been done with proper approval of institutional review boards, were done with informed consent from the participants, and have rarely been associated with serious adverse events
    corecore